Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Food ; 3(1): 19-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118483

RESUMO

Spatiotemporally consistent data on global cropland extent is essential for tracking progress towards sustainable food production. In the present study, we present an analysis of global cropland area change for the first two decades of the twenty-first century derived from satellite data time-series. We estimate that, in 2019, the cropland area was 1,244 Mha with a corresponding total annual net primary production (NPP) of 5.5 Pg C year-1. From 2003 to 2019, cropland area increased by 9% and cropland NPP by 25%, primarily due to agricultural expansion in Africa and South America. Global cropland expansion accelerated over the past two decades, with a near doubling of the annual expansion rate, most notably in Africa. Half of the new cropland area (49%) replaced natural vegetation and tree cover, indicating a conflict with the sustainability goal of protecting terrestrial ecosystems. From 2003 to 2019, global per-capita cropland area decreased by 10% due to population growth. However, the per-capita annual cropland NPP increased by 3.5% as a result of intensified agricultural land use. The presented global, high-resolution, cropland map time-series supports monitoring of natural land appropriation at the local, national and international levels.

3.
Nat Sustain ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34377840

RESUMO

A prominent goal of policies mitigating climate change and biodiversity loss is to achieve zero-deforestation in the global supply chain of key commodities, such as palm oil and soybean. However, the extent and dynamics of deforestation driven by commodity expansion are largely unknown. Here we mapped annual soybean expansion in South America between 2000 and 2019 by combining satellite observations and sample field data. From 2000-2019, the area cultivated with soybean more than doubled from 26.4 Mha to 55.1 Mha. Most soybean expansion occurred on pastures originally converted from natural vegetation for cattle production. The most rapid expansion occurred in the Brazilian Amazon, where soybean area increased more than 10-fold, from 0.4 Mha to 4.6 Mha. Across the continent, 9% of forest loss was converted to soybean by 2016. Soy-driven deforestation was concentrated at the active frontiers, nearly half located in the Brazilian Cerrado. Efforts to limit future deforestation must consider how soybean expansion may drive deforestation indirectly by displacing pasture or other land uses. Holistic approaches that track land use across all commodities coupled with vegetation monitoring are required to maintain critical ecosystem services.

4.
Sci Adv ; 6(11): eaax8574, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195340

RESUMO

Tropical forest fragmentation results in habitat and biodiversity loss and increased carbon emissions. Here, we link an increased likelihood of tropical forest loss to decreasing fragment size, particularly in primary forests. The relationship holds for protected areas, albeit with half the rate of loss compared with all fragments. The fact that disturbance increases as primary forest fragment size decreases reflects higher land use pressures and improved access for resource extraction and/or conversion in smaller fragments. Large remaining forest fragments are found in the Amazon and Congo Basins and Insular Southeast Asia, with the majority of large extent/low loss fragments located in the Amazon. Tropical areas without large fragments, including Central America, West Africa, and mainland Southeast Asia, have higher loss within and outside of protected areas. Results illustrate the need for rigorous land use planning, management, and enforcement in maintaining large tropical forest fragments and restoring regions of advanced fragmentation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Florestas , Modelos Biológicos , Clima Tropical
5.
Sci Adv ; 4(11): eaat2993, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30417092

RESUMO

A regional assessment of forest disturbance dynamics from 2000 to 2014 was performed for the Congo Basin countries using time-series satellite data. Area of forest loss was estimated and disaggregated by predisturbance forest type and direct disturbance driver. An estimated 84% of forest disturbance area in the region is due to small-scale, nonmechanized forest clearing for agriculture. Annual rates of small-scale clearing for agriculture in primary forests and woodlands doubled between 2000 and 2014, mirroring increasing population growth. Smallholder clearing in the Democratic Republic of the Congo alone accounted for nearly two-thirds of total forest loss in the basin. Selective logging is the second most significant disturbance driver, contributing roughly 10% of regional gross forest disturbance area and more than 60% of disturbance area in Gabon. Forest loss due to agro-industrial clearing along the Gulf of Guinea coast more than doubled in the last half of the study period. Maintaining natural forest cover in the Congo Basin into the future will be challenged by an expected fivefold population growth by 2100 and allocation of industrial timber harvesting and large-scale agricultural development inside remaining old-growth forests.


Assuntos
Conservação dos Recursos Naturais , Florestas , Árvores/fisiologia , Agricultura , Congo , Indústrias
6.
Bioscience ; 67(6): 534-545, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28608869

RESUMO

We assess progress toward the protection of 50% of the terrestrial biosphere to address the species-extinction crisis and conserve a global ecological heritage for future generations. Using a map of Earth's 846 terrestrial ecoregions, we show that 98 ecoregions (12%) exceed Half Protected; 313 ecoregions (37%) fall short of Half Protected but have sufficient unaltered habitat remaining to reach the target; and 207 ecoregions (24%) are in peril, where an average of only 4% of natural habitat remains. We propose a Global Deal for Nature-a companion to the Paris Climate Deal-to promote increased habitat protection and restoration, national- and ecoregion-scale conservation strategies, and the empowerment of indigenous peoples to protect their sovereign lands. The goal of such an accord would be to protect half the terrestrial realm by 2050 to halt the extinction crisis while sustaining human livelihoods.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Clima , Ecologia , Ecossistema , Humanos
7.
Sci Adv ; 3(1): e1600821, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28097216

RESUMO

An intact forest landscape (IFL) is a seamless mosaic of forest and naturally treeless ecosystems with no remotely detected signs of human activity and a minimum area of 500 km2. IFLs are critical for stabilizing terrestrial carbon storage, harboring biodiversity, regulating hydrological regimes, and providing other ecosystem functions. Although the remaining IFLs comprise only 20% of tropical forest area, they account for 40% of the total aboveground tropical forest carbon. We show that global IFL extent has been reduced by 7.2% since the year 2000. An increasing rate of global IFL area reduction was found, largely driven by the tripling of IFL tropical forest loss in 2011-2013 compared to that in 2001-2003. Industrial logging, agricultural expansion, fire, and mining/resource extraction were the primary causes of IFL area reduction. Protected areas (International Union for Conservation of Nature categories I to III) were found to have a positive effect in slowing the reduction of IFL area from timber harvesting but were less effective in limiting agricultural expansion. The certification of logging concessions under responsible management had a negligible impact on slowing IFL fragmentation in the Congo Basin. Fragmentation of IFLs by logging and establishment of roads and other infrastructure initiates a cascade of changes that lead to landscape transformation and loss of conservation values. Given that only 12% of the global IFL area is protected, our results illustrate the need for planning and investment in carbon sequestration and biodiversity conservation efforts that target the most valuable remaining forests, as identified using the IFL approach.


Assuntos
Florestas , Modelos Biológicos , Congo
8.
Glob Chang Biol ; 22(4): 1336-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26616240

RESUMO

Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of <2 degree increase in global average temperature change and is consistent with a target set last year by the governments, corporations, indigenous peoples' organizations and non-governmental organizations that signed the New York Declaration on Forests (NYDF). We assemble and refine a robust dataset to establish a 2001-2013 benchmark for average annual carbon emissions from gross tropical deforestation at 2.270 Gt CO2 yr(-1). Brazil did not sign the NYDF, yet from 2001 to 2013, Brazil ranks first for both carbon emissions from gross tropical deforestation and reductions in those emissions - its share of the total declined from a peak of 69% in 2003 to a low of 20% in 2012. Indonesia, an NYDF signatory, is the second highest emitter, peaking in 2012 at 0.362 Gt CO2 yr(-1) before declining to 0.205 Gt CO2 yr(-1) in 2013. The other 14 NYDF tropical country signatories were responsible for a combined average of 0.317 Gt CO2 yr(-1) , while the other 86 tropical country non-signatories were responsible for a combined average of 0.688 Gt CO2 yr(-1). We outline two scenarios for achieving the 50% emission reduction target by 2020, both emphasizing the critical role of Brazil and the need to reverse the trends of increasing carbon emissions from gross tropical deforestation in many other tropical countries that, from 2001 to 2013, have largely offset Brazil's reductions. Achieving the target will therefore be challenging, even though it is in the self-interest of the international community. Conserving rather than cutting down tropical forests requires shifting economic development away from a dependence on natural resource depletion toward recognition of the dependence of human societies on the natural capital that tropical forests represent and the goods and services they provide.


Assuntos
Carbono , Conservação dos Recursos Naturais , Clima Tropical
9.
Proc Natl Acad Sci U S A ; 112(5): 1328-33, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605880

RESUMO

To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas ("concessions") for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17-127%, 44-129%, or 3.1-11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia's moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241-615 MtCO2e (2.8-7.2%) lower without leakage, or 213-545 MtCO2e (2.5-6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30-7.50/tCO2e (mandatory) or $12.95-19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed.

10.
PLoS One ; 8(8): e69887, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967062

RESUMO

Combining protected areas with natural forest timber concessions may sustain larger forest landscapes than is possible via protected areas alone. However, the role of timber concessions in maintaining natural forest remains poorly characterized. An estimated 57% (303,525 km²) of Kalimantan's land area (532,100 km²) was covered by natural forest in 2000. About 14,212 km² (4.7%) had been cleared by 2010. Forests in oil palm concessions had been reduced by 5,600 km² (14.1%), while the figures for timber concessions are 1,336 km² (1.5%), and for protected forests are 1,122 km² (1.2%). These deforestation rates explain little about the relative performance of the different land use categories under equivalent conversion risks due to the confounding effects of location. An estimated 25% of lands allocated for timber harvesting in 2000 had their status changed to industrial plantation concessions in 2010. Based on a sample of 3,391 forest plots (1×1 km; 100 ha), and matching statistical analyses, 2000-2010 deforestation was on average 17.6 ha lower (95% C.I.: -22.3 ha- -12.9 ha) in timber concession plots than in oil palm concession plots. When location effects were accounted for, deforestation rates in timber concessions and protected areas were not significantly different (Mean difference: 0.35 ha; 95% C.I.: -0.002 ha-0.7 ha). Natural forest timber concessions in Kalimantan had similar ability as protected areas to maintain forest cover during 2000-2010, provided the former were not reclassified to industrial plantation concessions. Our study indicates the desirability of the Government of Indonesia designating its natural forest timber concessions as protected areas under the IUCN Protected Area Category VI to protect them from reclassification.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Árvores , Bornéu , Tomada de Decisões , Indonésia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...